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Predicting crop yields under climate change conditions from
monthly GCM weather projections
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Abstract

Estimation of changes in crop yields is currently based on projections of atmospheric General Circulation Models (GCM) and
the use of crop simulators. Crop simulators require daily input of environmental variables. GCMs produce monthly projections of
climatic variables. Our objective was to explore the possibility of using monthly weather projections in yield estimates. We con-
sidered atmospheric CO2 level, total solar radiation, average maximum and minimum temperature, and rainfall for five months of
the growing season. The group method of data handling (GMDH) was applied to relate crop yields to these variables. Projections
of GCMs were downscaled to provide daily weather variables for the Mississippi Delta, and weather patterns were obtained in 50
replications for each GCM. The soybean crop simulator GLYCIM was used to generate crop yields on sandy loam, loam and silt
loam soils. The equations built with GMDH explained 81–85% of yield variability, and included solar radiation in July and August,
CO2 level, minimum temperature in June and August, and rainfall in August. Published by Elsevier Science Ltd.
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1. Introduction

Ongoing changes in the global climate are likely to
have significant effects on agriculture (Watson et al.,
1996). Predicting the direction, scope, and magnitude of
these effects is necessary in order to develop and
implement successful management responses. Mechan-
istic crop simulation models are useful tools in this
regard because, provided with inputs derived from pre-
dicted climate change, they can simulate crop response
to these potential future conditions. Atmospheric Gen-
eral Circulation Models (GCM) represent the current
state of knowledge about how the earth’s climate is
likely to behave in the future (Giorgi et al., 1998). GCM
projections can be used to provide weather data for
future-oriented crop simulations (Rosenzweig and Hillel,
1998). Several comprehensive studies of climate change
effects on soybean yields were carried out using crop
simulators and GCM projections (Ritchie et al., 1989;
Rosenzweig et al., 1994; Haskett et al., 1997; Reddy et
al., 1997).

As the ongoing evolution of GCMs themselves pro-
duces new climate predictions, the crop simulations
should be repeated to give new estimates of crop
response. Crop models suitable to simulate elevated CO2

effects on crop yields include simulation of many com-
plex physiological processes and are thus themselves
complex and computationally intensive. Typically, they
require daily weather data. GCMs produce monthly pro-
jections of weather variables (Giorgi et al., 1998). A sim-
ple model explicitly expressing dependence of crop
yields on monthly climate variables would be very useful
because it could help to characterize these general
relationships and, if sufficiently broad in scope, could
allow us to estimate crop yields for new GCM projec-
tions without recourse to a full run of mechanistic
crop simulation.

The complexity of dependencies of crop yields on cli-
mate variables lends itself to the use of artificial neural
networks (ANN) which are becoming a common tool for
modeling complex ‘input–output’ dependencies (Hecht-
Nielsen, 1990). The advantage of ANNs is their ability
to mimic the behavior of complex systems by varying
the strength of the influence of network components to
each other and by varying the structure of the intercon-
nections among components. After establishing network

structure and finding coefficients to express the strength
of influence of the network components to each other,
an artificial neural network becomes a complex formula,
relating input values with output values (Alexander and
Morton, 1990). This formula can be used like a
regression formula.

There is a great variety of ANNs. The back-propa-
gation ANNs are applied most often. These ANNs have
been used to reproduce input–output relations for com-
plex process models including agricultural and land use
models (Elizondo et al., 1994; Lein, 1995; Joerding et
al., 1994; Pachepsky et al., 1996). Although the back
propagation ANNs often perform better than conven-
tional statistical regression (Pattie and Haas, 1996), they
have some disadvantages compared with regressions. In
particular, the equations built during ANN training are
opaque, and ANNs do not distinguish inputs by their
significance leaving the responsibility to select signifi-
cant inputs to a user (Jarvis and Stuart, 1996). Recently
the group method of data handling (GMDH) has gained
popularity as a tool to express complex ‘input–output’
dependencies. The GMDH provides automated selection
of essential input variables and builds hierarchical poly-
nomial regressions of necessary complexity (Farrow,
1984). The networks of polynomials built with GMDH
have fewer nodes than the artificial neural networks, but
the nodes are more flexible (Hecht-Nielsen, 1990). These
networks, called abductive or polynomial networks, have
been used in various areas of science and engineering
(Sommer et al., 1995; Abdel-Aal and Elhadidi, 1995;
Kleinsteuber and Sepehri, 1996) and have resulted in
good predictive models.

The objective of this work was to determine whether
and to what extent a GMDH network with monthly
weather variables as inputs would be able to mimic
results of a GCM-based mechanistic simulation of
soybean response to climate change and CO2 elevation.

2. Materials and methods

2.1. Soil and weather data

Three soils typical for the Mississippi Delta were
selected for this study. Soil textures were sandy loam,
loam, and silt loam (Table 1). The water holding
capacities were similar in all three soils.

Data of three global circulation models (GCMs) were
used to develop weather data sets for the simulations.
Simulation results of the Geophysical Fluid Dynamics
Laboratory (GFDL R30) model and of the United King-
dom Meteorological Office (UKMO 89) model were
obtained from the National Center for Atmospheric
Research (NCAR).1 The GRDPT utility developed by

1 ftp://ncardata.ucar.edu/datasets/ds318.1/datafiles/ GFDL
ftp://ncardata.ucar.edu/datasets/ds318.2/datafiles/ UKMO
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Table 1
Some properties of soils in this study

Depth Bulk density, Sand, Clay, Water content at Water content at Saturated hydraulic
field capacity, 215 bar, conductivity,

g cm2 % % cc cm3 cm23 cm3 cm23 cm day21

Bosket sandy loam
26 1.30 53 10 0.381 0.132 3.48
71 1.19 56 10 0.297 0.165 5.29
.71 1.16 75 5 0.362 0.143 5.30
Commerce silt loam
22 1.18 5 22 0.347 0.288 6.87
81 1.20 4 33 0.362 0.313 1.18
.81 1.17 13 19 0.380 0.319 25.20
Marietta loam
19 1.42 45 23 0.249 0.189 12.64
49 1.55 27 31 0.279 0.233 15.10
.49 1.37 35 32 0.322 0.266 2.65

NCAR was used to extract twelve monthly values of
solar radiation, precipitation and temperature for 1×CO2

(370 µl l21) and 2×CO2 (670 µl l21) climates for Jack-
son, Mississippi.

Mechanistic crop simulators use daily weather data
whereas GCMs produce monthly averages. We scaled
GCM monthly data down to daily weather sequences,
using the technique of Haskett et al. (1997) which in
turn was based on the method of Wilks (1992). This
technique is applied in the DWD (downscalingweather
data) program. In this technique, the generation of daily
weather data from GCM prediction requires (1): para-
meters of monthly local weather and daily weather varia-
bility, and (2) parameters of long-term changes in
weather indices averaged over month, season, or year.

Parameters of current baseline weather were estimated
for Jackson, MS by Richardson and Wright (1984). Para-
meters of long-term changes in weather introduced by
Wilks (1992) are estimated from monthly weather
characteristics produced by GCMs. These parameters are
as follow:b1=the slope of the dependence of the average
annual increase in the air temperature on time,
dTDJF=standardized average air temperature changes for
winter, equal to changes in average winter air tempera-
ture divided by change in the global air temperature,
dTJJA=standardized average air temperature changes for
summer, equal to changes in average summer air tem-
perature divided by change in the global air temperature,
DRDJF=increment of the average diurnal air temperature
range in winter,DRJJA=increment of the average diurnal
air temperature range in summer,n=exponent relating
the increase in the variance of the monthly precipitation
to the increase in monthly precipitation,dPi=relative
increases in average monthly precipitation, anddRi=rel-
ative increases in average monthly radiation integral,
i=1,12.

We calculate all these parameters (exceptn, DRDJF and
DRJJA) as differences or ratios from GCM-predicted

monthly and seasonal values for the 1×CO2 and 2×CO2

years. Examples of the parameters are presented in Table
2. Value n=1.31, DRDJF=0, andDRJJA=0 were adopted
from Haskett et al. (1997).

2.2. Crop simulations

We used the mechanistic soybean crop simulator
GLYCIM (Acock and Trent, 1991). GLYCIM consists
of a collection of modules that describe related sets of
physical or physiological processes and simulate the
growth of a plant in a uniform crop that is free of pests
and diseases. Balances of materials are kept for individ-
ual leaves and petioles on the plant. Balances of
materials are kept for other plant organs by type (i.e.
stems, flowers, seeds) and for soil by cells. Fluxes of
water, heat, nitrate, and oxygen are simulated for the soil
while fluxes of carbon, nitrogen, and other structural dry
matter are simulated for the plant. This simulator was
originally designed to examine interactions between
atmospheric CO2 concentration and other environmental
variables acting as factors of soybean crop productivity.
An approximately similar level of detail is achieved in
descriptions of physical and physiological processes
involved in plant growth and development, i.e. light
interception, carbon and nitrogen fixation, organ
initiation, organ growth and abscission, water and nitro-
gen flow in soil, heat transport, oxygen transport and
intrasoil consumption. The responses of GLYCIM to
elevated CO2 were tested with data from controlled
environment chambers and open top chambers (Haskett
et al., 1997).

In simulations of soybean yields under climate
change, there were four climate samples for each GCM:
the climates corresponding to CO2 concentrations of 370
ppm (considered ambient), 470 ppm, 570 ppm, and 670
ppm. There were 50 replicate weather files for each
GCM at each climate sample. A row spacing of 38 cm,
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Table 2
Weather generator parameters estimated from two GCM predictions
for Jackson, MS

Parameters UKMO GFDL

DT2×CO2, °C 4.2 3.9
b1, °C year21 0.075 0.06
dTDJF 1.22 1.21
dTJJA 0.86 1.07
Increase in monthly precipitation,
%, at doubled atmospheric CO2

as compared with the current
level
January 21.4 45.9
February 15.9 10.2
March 24.9 1.0
April 11.4 33.5
May 6.1 4.0
June 25.8 29.9
July 26.5 44.0
August 47.2 41.3
September 26.2 40.6
October 68.7 85.3
November 19.2 19.1
December 1.2 14.2
Relative increase in radiation at
doubled atmospheric CO2 as
compared with the current level
January 1.0 0.96
February 1.0 1.05
March 1.0 1.03
April 1.0 1.01
May 1.1 1.13
June 1.1 1.11
July 1.0 0.98
August 1.0 0.96
September 1.0 0.92
October 0.9 0.86
November 1.0 1.01
December 1.0 0.94

16 plants per meter of a row, 35 kg of residual N–NO3

per ha, and 3.5 kg residual N–NH4 per ha, cultivar Pion-
eer 9592 and emergence on May 15 were assumed in
all simulations.

2.3. Group method of data handling

The idea of the Group Method of Data Handling
(GMDH) is to employ estimates of the output variable
obtained from simple ‘primeval’ regression equations
that include small subsets of input variables (Farrow,
1984). Although the accuracy of such estimates is low,
it appears that these estimates can be better predictors
of the output variable than some of the input variables.
The best of these estimates are included in the set of
input variables, and again small subsets of variables
from this set are used to build new estimates.

A general functioning of the GMDH algorithm can be
understood from the following example. Let the original

data consist of a column of the observed values ofy and
of N columns of the observed values of the independent
variablesx1, x2, . . ., xN. The primeval equations are
quadratic polynomials:

z5A1Bu1Cv1Du21Ev21Fuv (2)

Here A, B, C, D, E, andF are parameters,u and v are
pairs of values ofx, andz is the best fit of the dependent
variabley.

Each iteration consists of three steps. Step 1 consists
of obtaining estimates ofy using primeval equations. All
independent variablesx1, x2, . . ., xN are taken two at a
time to becomeu andv in Eq. (2), and regression poly-
nomials (2) are constructed to estimatez. The total num-
ber of these polynomials isN(N21)/2. The resulting col-
umns of zm values, m=1, 2, . . ., N(N21)/2, contain
estimates ofy from each polynomial, and are interpreted
as new improved variables that may have better predic-
tive power than the originalx1, x2, . . ., xN. The objective
of the next step is to keep only the best of these new
variables.

Step 2 consists of screening out the least effective new
variables. There are several selection criteria (Farrow,
1984) all based on mean square absolute or relative error
of valueszm with respect to measuredy and often includ-
ing a correction that ‘punishes’ a network for excessive
complexity. In some versions of the method, columnszm

that have the criterion value smaller than a prescribed
value are retained. In other versions, a prescribed num-
ber of the bestzm are retained. The list of input variables
is modified in the end of this step. In some versions of
the method, columns ofx1, x2, . . ., xN are merely
replaced with the retained columns ofz1, z2, . . ., zK,
whereK is the total number of retained columns. In other
versions, the bestK retained columns are added to col-
umnsx1, x2, . . ., xN to form a new set of input variables.
The total numberN of input variables changes to reflect
the addition ofzm values or the replacement of old col-
umnsxN with zm new total number of input variables.

Step 3 consists of testing whether the set of equations
can be further improved. The smallest value of the selec-
tion criterion obtained at this iteration is compared with
the smallest value obtained at the previous iteration. If
an improvement is achieved, one goes back and repeats
steps 1 and 2, otherwise the iterations stop and the net-
work is built.

For this work, the version of the algorithm coded in
the commercial software ModelQuest (AbTech Corp,
1992) was used. It employs three input variables at a
time to build primeval regressions as cubic polynomials
of three independent variables, utilizes a step-wise
regression to diminish if possible both the number of
coefficients and the number of independent variables in
the primeval equations, limits the number of variables
to retain in the input list, and uses the criterion of Barron
(1984) to screen out new variables and to stop the iter-
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ations when complexity is balanced with accuracy. Both
original input variablesx1, x2, . . .,xN and output variable
y are normalized to have a zero mean value and unit
variance value and the normalized variables participate
in the network building. Results are then denormalized
to the original scale. Since we intended to use GMDH
networks as interpolation tools, no attempt was made to
divide data sets to training and evaluation subsets.

The original list of input variables for GMDH net-
works that we developed included average daily values
of the radiation integral, maximum and minimum tem-
perature, and precipitation for the five-month period
spanning May to September, i.e. growing period for
soybeans in the Mississippi Delta. The monthly values
were back calculated from daily values generated with
the Wilks (1992) method from GCM projections and
used in the original simulation. Atmospheric CO2 con-
centration was also an input. The total number of orig-
inal input variables was thus 21, and the GLYCIM-simu-
lated yield was the output predicted by the network. The
total number of input–output sets used to build the
GMDH network was 400=2 GCMs×4 Climate
Samples×50 Replicate Weather Files for each soil.

3. Results

An example of the GMDH network estimating
soybean yield on Marietta loam soil is shown in Fig.
1. In this figure, RadAug and RadJul are average daily
radiation integral in August and July, respectively,
TminJn and TminAu are average minimum daily tem-
peratures in June and August respectively, PrecAu is
average August precipitation, CO2 is atmospheric CO2

concentrations, Ave and StdDev mean average and

Fig. 1. A GMDH network to estimate soybean yield from monthly weather data and atmospheric CO2 concentration.

standard deviation across all data sets. Variables x1–x6
are obtained by normalizing RadAug, TminJn, CO2,
TminAu, PrecAu, and RadJul, respectively. Yield is
obtained by denormalizing output of the network with
Yield Ave and Yield StdDev which are average and
standard deviation of yields across all data sets. Only
average daily radiation integral in August and average
minimum temperature in June along with the CO2 con-
centration were retained at the first iteration, and a new
variablez1 was retained. At the second iteration, average
minimum temperature and precipitation in August were
selected as additional variables that formed a primeval
equation with thez1 variable to produce the new variable
z2. Finally, at the third iteration, average daily radiation
integral in July was selected as an additional variable to
form the primeval equation with thez2 variable. After
the third iteration, the number of coefficients in the
model was balanced with the model’s accuracy and iter-
ation was stopped. Thus only six variables were retained
as the essential ones from the original list of 21 variables
for this soil. The list of the essential variables appeared
to be the same for Marietta loam, and Commerce silt
loam soils, whereas the average daily radiation integral
in July was replaced with the precipitation in July for
the Bosket sandy loam soil.

GLYCIM-simulated and GMDH-estimated yields are
compared in Fig. 2. GMDH networks based on monthly
weather values explain 81–85% of the variability in
yields. Regression of the GMDH-estimated yields on
GLYCIM-simulated yields resulted in values of slopes
that did not differ significantly from one at 1% prob-
ability level.

There were differences between yield data obtained
on different soils. The probability distribution functions
of yields simulated with GLYCIM are shown in Fig. 3.
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Fig. 2. Comparison of soybean yields calculated with GLYCIM and estimated with the GMDH network for three soils under global change con-
ditions.

Fig. 3. Probability distribution functions of the soybean yields on
three soils estimated under ambient and climate change conditions.

Yields on sandy soil had the widest variation. Yields on
loam soil were higher than those on sandy loam and silt
loam soil.

A formal sensitivity analysis can be carried out for a
GMDH network. However, the transparency of the
GMDH dependencies makes it easy to analyze the rela-
tive importance of variations in environmental factors
for the yield formation. For the example shown in Fig.
1, variablez3 is approximately equal to variablez2 in the
vicinity of zero values ofx6 andz2, because bothx6 and
z2 are included only in polynomials of degree higher than
one. Therefore, the average radiation integral in July,
RadJul represented with the variablex6 can be important
only when it deviates significantly from the average,
otherwise the importance of RadJul is only marginal.
Analogously, variablez2 depends onz1 much more
strongly than onx4 in the vicinity of zero values because
coefficients precedingz1 and x4 are 1.05 and20.149,
respectively. Therefore the relative effect of precipitation
in August reflected in values ofx4 is much less than
the relative joint effect of radiation in August, minimum
temperature in June, and CO2 concentration reflected in
values ofz1. Finally, the variablez1 depends onx3 much

more strongly than onx1 andx2 because the coefficients
precedingx1, x2, and x3 are 0.209,20.108, and 0.909,
respectively. Therefore, the relative effect of the changes
in CO2 elevation on thez1 values is much larger than
that of changes in minimum June temperature or in the
August radiation. Going back through the aforemen-
tioned chain of reasoning, one can deduce that the CO2

elevation is the leading factor in yield changes as com-
pared with changes in weather patterns.

Signs of coefficients in GMDH equations also shed
light on the effect of the environmental factors. Bothx3

used to calculatez1 andx4 used to calculatez2 have nega-
tive coefficients preceding them. The two variables,x3

andx4 are normalized minimum daily temperatures, and
the yields become lower as the night temperatures
increase.

The GMDH dependencies can be used to assess and
visualize interactive effects of changes in environmental
factors on yields. The effect of changes in CO2 level and
in June minimum temperature is shown in Fig. 4. In this
figure, normalized values are obtained by subtraction of
average and dividing by the standard deviation, both cal-
culated across all data. As the June minimum tempera-
ture increases, the effect of elevated CO2 on yields
becomes mitigated. Yield grows almost linearly with
CO2 increases when June minimum temperatures are
low. However, the CO2 elevation effect on yields
becomes mitigated at low CO2 levels as the June mini-
mum temperature grows. The effect of the June mini-
mum temperature on yields is opposite at low and at
high CO2 levels.

4. Discussion

The GMDH networks were able to reproduce the
results of the simulations with a relatively high degree
of accuracy. This probably happened because plant
development as represented in the CLYCIM simulator
is relatively stable and integrates the variable daily



85V.R. Reddy, Ya.A. Pachepsky / Environmental Modelling & Software 15 (2000) 79–86

Fig. 4. Sensitivity of the changes in soybean yield on Marietta loam
soil to relative changes in atmospheric CO2 level and in minimum
temperature in June.

weather into a relatively robust growth and development
pattern. It is consistent with the results of Swanson and
Nyankori (1979), who found that the addition of monthly
values of precipitation and mean temperature (May,
June, July, August) greatly increased the percent of yield
variation explained by independent variables in their
regression equation. This was particularly true for
soybeans for whichR2 increased from 0.285 for the
regression with technology alone without weather vari-
ables to 0.703 for the regression that included monthly
precipitation and mean temperatures. Fluctuations of
weather variables within month spans, e.g. dry spells,
affect plant growth and development and can limit the
accuracy of yield predictions based on monthly aver-
age values.

The list of essential monthly weather variables selec-
ted by the GMDH is consistent with data from soybean
crop research. Researchers agree that water supply is
most important for soybean plants during the repro-
ductive development as the plants reach reproductive
stages 4 and 5 (Ashley and Ethridge, 1978; Brown et
al., 1985; Elmore et al., 1988). August is the month when
these stages are achieved by soybean crops in Missis-
sippi (Acock et al., 1997) and this explains the selection
of August precipitation as the essential variable.

Both June and August minimum temperatures were
selected as the essential predictors. High minimum tem-
peratures result in larger respiration losses of photosyn-
thetically accumulated carbon and also suppress meta-
bolic transformation of carbohydrates to structural
compounds in soybean plants (Bunce and Ziska, 1996;
Vu et al., 1997). An increase in June minimum tempera-
tures led to increases in yields with ambient CO2 but
caused a decrease in yields with high CO2 concen-

trations. High minimum temperatures in June could pre-
vent creation of sufficient leaf area and crop cover to
intercept solar radiation in sufficient amounts to utilize
extra carbon available for fruit development in August.

The effect of CO2 elevation on yields was modified
by increasing minimum temperatures (Fig. 4). This trend
is consistent with results of other researchers who used
several GCM scenarios to study effect of climate change
on soybean yields. For example, Rosenzweig et al.
(1994) did an extensive study on the effects of climate
change on crops in all major growing areas of 48 states
of the contiguous US. The study used climate data
obtained from the GFDL, GISS and UKMO GCMs. The
UKMO scenario suggested much larger increases in tem-
peratures than the other two. Effects of changes in
atmospheric CO2 on crop development were included
through increases in photosynthesis and stomatal resist-
ance. In this study, CO2 fertilization mitigated climate-
based yield reductions so that yield increases occurred
in all but the UKMO scenario in which yields decreased.

CO2 elevation appears to be the most essential input
variable as compared with monthly weather parameters.
This result is obtained for a particular crop simulator,
and for another crop simulator the relative significance
of CO2 elevation may be different as compared with the
significance of the monthly climate variables. Haskett et
al. (1997) observed in a study for Iowa that, without the
increase in atmospheric CO2, soybean yields remained
practically constant in the GFDL and GISS scenarios,
while decreasing by 2 to 10% in the UKMO scenario.
In contrast, in a regional study of the effects of climate
change and CO2 elevation on agriculture in the Great
Lakes, Ritchie et al. (1989) found that climate change
led to decrease in yields in their simulations and resulted
in yield increases only in some cases. Such discrepancies
show that a simulator needs to be used that is tested with
data on plant and crop growth at elevated CO2.

Soil properties affected the results of simulation in this
study. Larger yields were found in loam soil than in the
two other soils having extreme textural composition. The
generality offered by the GMDH in this study is still
limited by the choice of soil for simulations. Though not
as weighty as weather, soil properties and plant density
remain significant factors affecting crop yield under glo-
bal change conditions (Haskett et al., 1997). Reddy et
al. (1997) found that soil properties had significant effect
on carbon partitioning between soybean shoots and roots
under climate change conditions in the Southern US.
Incorporating the spatial variability of soil and field man-
agement into scenarios of simulations and then into
inputs of GMDH represents an interesting field to
explore.

The results show that GMDH networks can be used to
extend the predictive power of computationally intensive
mechanistic biological simulation models. This is
important for global change studies. Much of the likely
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behavior of systems of interest in biological global
change research occurs outside the range observed in the
past. Regression approaches based on historical data are
not valid because they involve extrapolations outside the
range of the data. Mechanistic simulations based on rel-
evant physical and biological interactions are needed to
determine the likely behavior of economically significant
species. Interactions between the atmosphere and the
biosphere occur gradually over a long period of time.
The current work demonstrates that a GMDH network
can be used to extend such a dataset that includes inter-
mediate stages in global change progression, to derive
general results between crop yields and GCM-based
combinations of temperature, precipitation, and CO2

concentration. This derivation was achieved without pro-
hibitively extensive computation. The need for this kind
of flexibility is underscored by the ongoing advances in
our understanding of the climate system. These advances
drive the evolution of the GCMs resulting in changed
climate predictions with each iteration of such models.
By deriving the general relationship the likely effects of
such new predictions on crop yields can be determined
simply by mapping them into GMDH inputs. In this way
an initial estimate of the impact of such changes can be
obtained which can then be refined if needed by using
mechanistic crop simulators.
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